Reengineering Education

EDUCATION SYSTEMS, ENGINEERED

Education systems are complex, interconnected, distributed systems, and it is the nature of this complexity and interconnectedness that has made them notoriously difficult to change (Hargreaves, Lieberman, Fullan, & Hopkins, 2014). History, and a considerable amount of research, has demonstrated that systems of education are notoriously difficult to manage well, and to reform. Decades of work on centralized, large-scale reform initiatives across a range of educational systems and countries have repeatedly shown the limited impact of these efforts on learning and achievement of young people (Fullan, 2000, 2016; Harris, 2003). Although the critical need for transformation of learning environments and systems has been well-established, the relationship between systems change and classroom practice has shown to be exceedingly complex (Levine, 2009; Smylie & Perry, 1998). Unfortunately, lack of understanding of this complexity and interconnectedness, and subsequent application of technical approaches to address this complexity has resulted in such poor impact and little transformation (Fullan, 2010).

Reform vs. Redesign

Seymour Papert framed this dichotomy as the problem-solving approach versus the systemic approach to ‘renovating school’ (as he quipped) — identifying and trying to solve the many problems that afflict schools versus stepping back to understand how the whole system works (Papert, 2000). Similarly, this has been framed an ‘ecological’ systemic thinkers view to changing education, because this view embraces the powerful relationship between the components in and out of the system, and thus advocate for a comprehensive approach to systemic change that considers the redesign of all aspects of the system (Banathy, 1992; Squire & Reigeluth, 2000).

Designing the Future at Bell Labs

Russell Ackoff is known for his tale of how Bell Labs imagined — and created — the telephone system of the future (Ackoff, 2006). It was 1951, and Ackoff was visiting Bell Labs on what happened to be a particularly important day. The vice president there had called a last minute emergency meeting of key personnel — based on his demeanor, something was very wrong. He finally approached the podium, and explained “Gentlemen, the telephone system of the United States was destroyed last night.” After much explanation, the group assembled was aghast. Once the color returned to the VP’s face, he began to laugh and explain the hoax — it was motivation to set the stage for the task they were about to engage in, and to explain that not a single one of any of the most important, current technologies being used in the modern telephone system had been developed in this century. Innovation, in this space, had been barren for quite some time. Using this context as a backdrop, he presented his teams with a challenge: “We are going to begin by designing the system with which we would replace the existing system right now if we were free to replace it with whatever system we wanted, subject to only two not- very-restrictive constraints: First, technological feasibility, meaning we cannot use any but currently available knowledge. No science fiction. We can’t replace the phone with mental telepathy; Second constraint, the system we design must be operationally viable — meaning it must be able to function and survive in the current environment.”

  1. It must be able to survive in the current environment and, therefore, satisfy whatever legal, social, economic and other externally imposed constraints or regulations apply in that environment; there is no requirement, however, that the system designed be capable of being implemented.
  2. The system must be designed so that it is capable of learning and adapting rapidly and effectively.

Engineering Alternate Futures of Learning, Learning Environments, and Systems

This emphasis on design, and Ackoff’s framing with design constraints, are of particular interest because they have so rarely been brought to the systems level for how we think of [eco]systems of learning. We don’t often give ourselves the space to ‘greenfield’ at the systems levels in education. The notion has rarely showed up in discourse, and certainly less so in practice. Perhaps it is because of the gravitas to the current system. Perhaps it is because the systemic, pervasive nature of our current reality of these systems makes it difficult to imagine, and reach for, something drastically different. Perhaps it is because when we envision the ‘micro’, day-to-day experiences that we hope for learners to have, it’s not intuitive or common practice to zoom out and think about the type of radically different system structures that would be required to make that a systemic reality for all learners. Yet it is for these reasons that we must engage with these types of systems tools and realities if we ever want to arrive at a better future for learning — because as Banathy (1992) reminds us, “adjusting a design rooted in an outdated image creates far more problems than it solves.”

The 7 ‘First Principles’ of Learning as defined by the OECD Innovative Learning Environments project — from the book The Nature of Learning — see also the 12-page practitioner guide based on the book.

ENGINEERING FOR MODERN LEARNING AT SCALE

Education is arguably one of society’s most complex endeavors. Unlike mechanical engineering and chemical engineering, education’s primary object of focus (learning) is invisible and largely intangible; the end users (learners and educators) have limited say and authority over decision-making, while multiple layers of local, state, and national policies come together to create the governance structures that ultimately largely define the everyday practices that ultimately define learning outcomes (Bar-Yam, 2004). In fact, today we can stand on a considerable foundation or research, methods, and applications that define the nature of human learning. Yet given the challenges and complexity of enabling quality learning at scale across our societies, now more than ever we need a science of education systems, and to apply the same intensity of approaches to the design of these systems. Now more than ever, we need educational engineers — to tackle the reengineering of the systems that deliver learning at scale.

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
Jennifer Groff

Jennifer Groff

Learning Futurist. I research, design and create learning technologies, environments and systems. PhD @MIT Media Lab; CEO/Founder of Learning Futures